Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Is AI disrupting jobs and creating unemployment? This question has stirred public concern for job stability and motivated studies assessing occupations’ automation risk. These studies used readily available employment and wage statistics to quantify occupational changes for employed workers. However, they did not directly examine unemployment dynamics primarily due to the lack of data across occupations, geography, and time. Here, we overcome this barrier using monthly occupation-level unemployment data from each US state’s unemployment insurance office from 2010 to 2020 to assess AI exposure models, job separations, and unemployment through a new measure called unemployment risk. We demonstrate that standard employment statistics are inadequate proxies for occupations’ unemployment risk and find that individual AI exposure models are poor predictors of occupations’ unemployment risk states’ total unemployment rates, and states’ total job separation rates. However, an ensemble approach exhibits substantial predictive power, accounting for an additional 18% of variation in unemployment risk across occupations, states, and time compared to a baseline model that controls for education, occupations’ skills, seasonality, and regional effects. These results suggest that competing models may capture different aspects of AI exposure and that automation shapes US unemployment. Our results demonstrate the power of occupation-specific job disruption data and that efforts using only one AI exposure score will misrepresent AI’s impact on the future of work.more » « less
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Abstract Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities. We find that dependency networks computed from human mobility exhibit significantly higher rates of long-distance connections and biases towards specific pairs of point-of-interest categories. We show that using behaviour-based dependency relationships improves the predictability of business resilience during shocks by around 40% compared with distance-based models, and that neglecting behaviour-based dependencies can lead to underestimation of the spatial cascades of disruptions. Our findings underscore the importance of measuring complex relationships in patterns of human mobility to foster urban economic resilience to shocks.more » « lessFree, publicly-accessible full text available December 23, 2025
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            Diversity of physical encounters in urban environments is known to spur economic productivity while also fostering social capital. However, mobility restrictions during the pandemic have forced people to reduce urban encounters, raising questions about the social implications of behavioral changes. In this paper, we study how individual income diversity of urban encounters changed during the pandemic, using a large-scale, privacy-enhanced mobility dataset of more than one million anonymized mobile phone users in Boston, Dallas, Los Angeles, and Seattle, across three years spanning before and during the pandemic. We find that the diversity of urban encounters has substantially decreased (by 15% to 30%) during the pandemic and has persisted through late 2021, even though aggregated mobility metrics have recovered to pre-pandemic levels. Counterfactual analyses show that behavioral changes including lower willingness to explore new places further decreased the diversity of encounters in the long term. Our findings provide implications for managing the trade-off between the stringency of COVID-19 policies and the diversity of urban encounters as we move beyond the pandemic.more » « less
- 
            We use high-resolution mobile phone data with geolocation information and propose a novel technical framework to study how social influence propagates within a phone communication network and affects the offline decision to attend a performance event. Our fine-grained data are based on the universe of phone calls made in a European country between January and July 2016. We isolate social influence from observed and latent homophily by taking advantage of the rich spatial-temporal information and the social interactions available from the longitudinal behavioral data. We find that influence stemming from phone communication is significant and persists up to four degrees of separation in the communication network. Building on this finding, we introduce a new “influence” centrality measure that captures the empirical pattern of influence decay over successive connections. A validation test shows that the average influence centrality of the adopters at the beginning of each observational period can strongly predict the number of eventual adopters and has a stronger predictive power than other prevailing centrality measures such as the eigenvector centrality and state-of-the-art measures such as diffusion centrality. Our centrality measure can be used to improve optimal seeding strategies in contexts with influence over phone calls, such as targeted or viral marketing campaigns. Finally, we quantitatively demonstrate how raising the communication probability over each connection, as well as the number of initial seeds, can significantly amplify the expected adoption in the network and raise net revenue after taking into account the cost of these interventions. History: Sam Ransbotham, Senior Editor; Yan Huang, Associate Editor. Funding: Y. Leng acknowledges the support provided by the National Science Foundation [Grant IIS-2153468]. E. Moro acknowledges the support provided by the National Science Foundation [Grant 2218748]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/isre.2023.1231 .more » « less
- 
            Abstract Poor diets are a leading cause of morbidity and mortality. Exposure to low-quality food environments saturated with fast food outlets is hypothesized to negatively impact diet. However, food environment research has predominantly focused on static food environments around home neighborhoods and generated mixed findings. In this work, we leverage population-scale mobility data in the U.S. to examine 62M people’s visits to food outlets and evaluate how food choice is influenced by the food environments people are exposed to as they move through their daily routines. We find that a 10% increase in exposure to fast food outlets in mobile environments increases individuals’ odds of visitation by 20%. Using our results, we simulate multiple policy strategies for intervening on food environments to reduce fast-food outlet visits. This analysis suggests that optimal interventions are informed by spatial, temporal, and behavioral features and could have 2x to 4x larger effect than traditional interventions focused on home food environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
